Oscillator fluctuations are described as the phase or frequency noise spectrum, or in terms of a wavelet variance as a function of the measurement time. The spectrum is generally approximated by the `power law,' i.e., a Laurent polynomial with integer exponents of the frequency. This article extends the domain of application of PVAR, a wavelet variance which uses the linear regression on phase data to estimate the frequency, and called `parabolic' because such regression is equivalent to a parabolic-shaped weight function applied to frequency fluctuations. In turn, PVAR is relevant in that it improves on the widely-used Modified Allan variance (MVAR) enabling the detection of the same noise processes at the same confidence level in a shorter measurement time. More specifically, we provide (i) the analytical expression of the response of the PVAR to the frequency-noise spectrum in the general case of non-integer exponents of the frequency, and (ii) a useful approximate expression of the statistical uncertainty.


翻译:振动器波动被描述为阶段或频率噪声频谱,或按测量时间的函数波盘变化,该频谱一般被“功率法”,即劳伦多式波段,与频率的整数引言相近。这一条扩展了PVAR的应用范围,即波段波动,利用阶段数据的线性回归来估计频率,称为“抛物线”,因为这种回归相当于对频率波动应用的抛物线形重量函数。反过来,PVAR具有相关性,因为它改进了广泛使用的变形阿伦差异(MVAR),以便能够在较短的测量时间内在同一信任水平上检测相同的噪声过程。更具体地说,我们提供了(一) PVAR对频率非内位标的频率波段的反应的分析表达,以及(二) 有用的统计不确定性的大致表达。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年4月22日
Learning to Importance Sample in Primary Sample Space
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【论文】图上的表示学习综述
机器学习研究会
15+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员