Among the most damaging characteristics of the covid-19 pandemic has been its disproportionate effect on disadvantaged communities. As the outbreak has spread globally, factors such as systemic racism, marginalisation, and structural inequality have created path dependencies that have led to poor health outcomes. These social determinants of infectious disease and vulnerability to disaster have converged to affect already disadvantaged communities with higher levels of economic instability, disease exposure, infection severity, and death. Artificial intelligence (AI) technologies are an important part of the health informatics toolkit used to fight contagious disease. AI is well known, however, to be susceptible to algorithmic biases that can entrench and augment existing inequality. Uncritically deploying AI in the fight against covid-19 thus risks amplifying the pandemic's adverse effects on vulnerable groups, exacerbating health inequity. In this paper, we claim that AI systems can introduce or reflect bias and discrimination in three ways: in patterns of health discrimination that become entrenched in datasets, in data representativeness, and in human choices made during the design, development, and deployment of these systems. We highlight how the use of AI technologies threaten to exacerbate the disparate effect of covid-19 on marginalised, under-represented, and vulnerable groups, particularly black, Asian, and other minoritised ethnic people, older populations, and those of lower socioeconomic status. We conclude that, to mitigate the compounding effects of AI on inequalities associated with covid-19, decision makers, technology developers, and health officials must account for the potential biases and inequities at all stages of the AI process.
翻译:由于疫情在全球蔓延,系统性种族主义、边缘化和结构性不平等等因素造成了导致健康结果不佳的道路依赖性。传染病和易受灾害影响的这些社会决定因素汇合在一起,对本已处于不利地位的社区产生影响,经济不稳定、疾病暴露、感染严重程度和死亡程度较高。人工智能(AI)技术是用于防治传染病的保健信息工具包的重要组成部分。但大赦国际是众所周知的,很容易受到可能巩固和加剧现有不平等的算法偏见的影响。在打击共性19的斗争中,无端地部署AI有可能扩大该流行病对弱势群体的不利影响,加剧健康不平等。在本文中,我们声称,AI系统可以以三种方式引入或反映偏见和歧视:在数据集、数据代表性、在设计、发展和部署这些系统期间作出的人类选择中根深蒂固的健康歧视模式。大赦国际是众所周知的。使用AI技术会加剧不平等在共性19年斗争中产生的不同影响,在老年社会经济地位下,在社会-19年时期,在社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-人口-社会-社会-社会-社会-群体之间的不平等状况下,其潜在地位、社会-的不平等状况下,其影响。我们。我们等-、社会-、社会-、社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-人口-社会-社会-社会-社会-社会-、社会-、社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-、社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-社会-