Prior work has shown that coupling sequential latent variable models with semantic ontological knowledge can improve the representational capabilities of event modeling approaches. In this work, we present a novel, doubly hierarchical, semi-supervised event modeling framework that provides structural hierarchy while also accounting for ontological hierarchy. Our approach consists of multiple layers of structured latent variables, where each successive layer compresses and abstracts the previous layers. We guide this compression through the injection of structured ontological knowledge that is defined at the type level of events: importantly, our model allows for partial injection of semantic knowledge and it does not depend on observing instances at any particular level of the semantic ontology. Across two different datasets and four different evaluation metrics, we demonstrate that our approach is able to out-perform the previous state-of-the-art approaches, demonstrating the benefits of structured and semantic hierarchical knowledge for event modeling.
翻译:先前的工作表明,将连续的潜伏变量模型与语义本体学知识混合在一起,可以提高事件模型方法的代表性能力。在这项工作中,我们提出了一个新的、双重等级的、半监督的事件模型框架,提供结构等级,同时也考虑到本体学等级。我们的方法包括多层结构化潜在变量,每个连续的层压缩和总结前几层。我们通过注入在事件类型层次上界定的结构化的本体知识来指导这种压缩:重要的是,我们的模式允许部分注入语义知识,它不依赖于在语义本体学任何特定层次的观察实例。在两个不同的数据集和四个不同的评价指标中,我们证明我们的方法能够超越以往的状态潜在变量,展示结构化和语义等级知识对事件模型的好处。