The latticework structure known as the cosmic web provides a valuable insight into the assembly history of large-scale structures. Despite the variety of methods to identify the cosmic web structures, they mostly rely on the assumption that galaxies are embedded in a Euclidean geometric space. Here we present a novel cosmic web identifier called SCONCE (Spherical and CONic Cosmic wEb finder) that inherently considers the 2D (RA,DEC) spherical or the 3D (RA,DEC,$z$) conic geometry. The proposed algorithms in SCONCE generalize the well-known subspace constrained mean shift (SCMS) method and primarily address the predominant filament detection problem. They are intrinsic to the spherical/conic geometry and invariant to data rotations. We further test the efficacy of our method with an artificial cross-shaped filament example and apply it to the SDSS galaxy catalogue, revealing that the 2D spherical version of our algorithms is robust even in regions of high declination. Finally, using N-body simulations from Illustris, we show that the 3D conic version of our algorithms is more robust in detecting filaments than the standard SCMS method under the redshift distortions caused by the peculiar velocities of halos. Our cosmic web finder is packaged in python as SCONCE-SCMS and has been made publicly available.


翻译:被称为宇宙网的星格结构提供了对大型结构组装历史的宝贵洞察力。 尽管有各种各样的方法来识别宇宙网结构, 它们大多依赖于星系嵌入于欧洲clidean几何空间的假设。 我们在这里展示了一个叫做SCONCE( 球形和宇宙宇宙宇宙查找器)的新颖的宇宙网络标识符, 它从本质上考虑到2D( RA,DEC) 球形或 3D( RA,DEC, $z$$) 等离子几何。 SCONCE 中的拟议算法将众所周知的子空间限制平均移动( SCMS) 方法( SCMS) 概括化, 并主要解决主要的丝质检测问题。 它们与球形/ 音量测量和数据旋转的变量是内在的。 我们用一个人工交叉形状的线条形示例来测试我们的方法的功效, 显示我们的算法的2D球形版本即使在高分解度区域也是坚固的。 最后, 使用来自Illustrial SC 的N imal implical commacal 系统, 我们的SICMISCLiscal Scal 的Scal 方法在Scal commal 版本中以更牢固的SICMScal 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
53+阅读 · 2020年9月7日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员