Regression discontinuity (RD) designs are popular quasi-experimental studies in which treatment assignment depends on whether the value of a running variable exceeds a cutoff. RD designs are increasingly popular in educational applications due to the prevalence of cutoff-based interventions. In such applications sample sizes can be relatively small or there may be sparsity around the cutoff. We propose a metric, density inclusive study size (DISS), that characterizes the size of an RD study better than overall sample size by incorporating the density of the running variable. We show the usefulness of this metric in a Monte Carlo simulation study that compares the operating characteristics of popular nonparametric RD estimation methods in small studies. We also apply the DISS metric and RD estimation methods to school accountability data from the state of Indiana.
翻译:递减不连续(RD)设计是流行的准实验性研究,在这种研究中,治疗任务取决于运行变量的价值是否超过截断点。由于基于截断的干预措施的普及性,RD设计在教育应用中越来越受欢迎。在这种应用中,抽样规模可能相对较小,或者在截断点周围可能出现偏狭现象。我们提出了一个指标性、密度包容性研究规模(DIS),通过纳入运行变量的密度来说明RD研究的规模比总体抽样规模要好。我们在蒙特卡洛模拟研究中显示了这一指标的有用性,该模型比较了小型研究中流行的非参数的RD估计方法的操作特点。我们还对印第安纳州的学校问责数据应用了IMSS指标和RD估计方法。