Sound event localization and detection (SELD) is a joint task of sound event detection and direction-of-arrival estimation. In DCASE 2022 Task 3, types of data transform from computationally generated spatial recordings to recordings of real-sound scenes. Our system submitted to the DCASE 2022 Task 3 is based on our previous proposed Event-Independent Network V2 (EINV2) with a novel data augmentation method. Our method employs EINV2 with a track-wise output format, permutation-invariant training, and a soft parameter-sharing strategy, to detect different sound events of the same class but in different locations. The Conformer structure is used for extending EINV2 to learn local and global features. A data augmentation method, which contains several data augmentation chains composed of stochastic combinations of several different data augmentation operations, is utilized to generalize the model. To mitigate the lack of real-scene recordings in the development dataset and the presence of sound events being unbalanced, we exploit FSD50K, AudioSet, and TAU Spatial Room Impulse Response Database (TAU-SRIR DB) to generate simulated datasets for training. We present results on the validation set of Sony-TAu Realistic Spatial Soundscapes 2022 (STARSS22) in detail. Experimental results indicate that the ability to generalize to different environments and unbalanced performance among different classes are two main challenges. We evaluate our proposed method in Task 3 of the DCASE 2022 challenge and obtain the second rank in the teams ranking. Source code is released.
翻译:稳妥事件本地化和检测( SELD) 是健全事件检测和抵达方向评估的共同任务。 在 DCASE 2022 任务 3 中, 数据类型从计算生成的空间记录转换为真实的场景记录。 我们提交给 DCASE 2022 任务 3 的系统是基于我们先前提议的“ 独立网络V2”(EINV2) 和一种新型的数据增强方法。 我们的方法是使用 EINV2, 使用一种跟踪式输出格式、 变换- 变化培训和软参数共享战略, 以探测同一类但在不同地点的不同事件。 连接结构用来扩展 EINV2 以学习本地和全球特征。 一个数据增强方法, 包含由若干不同数据增强操作的随机组合组成的数据增强链 。 为了减轻发展数据集中缺少真实记录的情况, 我们利用 FSDSD50K、 SyalSet, 以及 TAU 空间室内不同声音反应数据库( TAU-SR 22 主机级系统 20 Syalalalalalal Acreal Adal Acreal Acal laveal) 和SettyWe 20 WeWeal As the Sildal As laveal 20 Sildal Acal Acreal Acal lavemental Acal Acal lavemental dal ladal 20 Serval estal ladal estal estal ladal estal estal ladal ladal 20 Sal ladal ladal ladal ladal lax lactions ladal ests ladal ests ladal labal 20 Setdal labal ladal ladal ladal ladal ladaldaldaldaldal ladal ladal ladaldal ladal ladal ladal lad ladal ladal ladal lad ladaldaldal ladal ladal 20 Setal lad