In this paper, we propose new algorithms for the evacuation problems defined on dynamic flow networks. A dynamic flow network consists of a directed graph where source nodes are given supplies (i.e., the number of evacuees) and a single sink node is given a demand (i.e., the maximum number of acceptable evacuees). The evacuation problem asks for a dynamic flow that sends all supplies from sources to the sink so as to satisfy its demand in the minimum feasible time horizon. For this problem, the current best algorithms are developed by Schl\"oter (2018) and Kamiyama (2019). Their algorithms run in strongly polynomial time, but is high-order polynomial. This is because their algorithms use the submodular function minimization as a subroutine. In this paper, we propose new algorithms which do not explicitly execute the submodular function minimization, and prove our algorithms run faster than the ones by Schl\"oter (2018) and Kamiyama (2019) when an input network is restricted so that the sink has a small in-degree and every edge has the same capacity.
翻译:在本文中, 我们为动态流网络定义的疏散问题提出新的算法。 动态流网络由提供源节点( 即被疏散者的数量) 和单一汇节点的需求( 可接受的疏散者的最大数量) 的定向图表组成。 疏散问题要求动态流, 将所有源的供给发送到水槽, 以满足其最低可行时间范围的需求。 对此问题, 当前的最佳算法是由 Schl\"oter (2018年) 和 Kamiyama (2019年) 开发的。 他们的算法在强烈的多元时间运行, 但却是高阶多波段。 这是因为他们的算法使用亚模式函数作为亚模式函数的亚模式节点。 在本文中, 我们提出了新的算法, 不明确地执行亚模式函数最小化, 并且证明我们的算法运行速度比Schl\oter ( 2018年) 和 Kamiyama (2019年) 的算法要快, 当输入网络受到限制时, 使水槽的深度小, 每个边缘都有同样的能力 。