Recently, Ivan Mihajlin and Alexander Smal proved a composition theorem of a universal relation and some function via so called xor composition, that is there exists some function $f:\{0,1\}^n \rightarrow \{0,1\}$ such that $\textsf{CC}(\text{U}_n \diamond \text{KW}_f) \geq 1.5n-o(n)$ where $\textsf{CC}$ denotes the communication complexity of the problem. In this paper, we significantly improve their result and present an asymptotically tight and much more general composition theorem of a universal relation and most functions, that is for most functions $f:\{0,1\}^n \rightarrow \{0,1\}$ we have $\textsf{CC}(\text{U}_m \diamond \text{KW}_f) \geq m+ n -O(\sqrt{m})$ when $m=\omega(\log^2 n),n =\omega(\sqrt{m})$. This is done by a direct proof of composition theorem of a universal relation and a multiplexor in the partially half-duplex model avoiding the xor composition. And the proof works even when the multiplexor only contains a few functions. One crucial ingredient in our proof involves a combinatorial problem of constructing a tree of many leaves and every leaf contains a non-overlapping set of functions. For each leaf, there is a set of inputs such that every function in the leaf takes the same value, that is all functions are restricted. We show how to choose a set of good inputs to effectively restrict these functions to force that the number of functions in each leaf is as small as possible while maintaining the total number of functions in all leaves. This results in a large number of leaves.
翻译:暂无翻译