Federated Learning (FL) allows training machine learning models in privacy-constrained scenarios by enabling the cooperation of edge devices without requiring local data sharing. This approach raises several challenges due to the different statistical distribution of the local datasets and the clients' computational heterogeneity. In particular, the presence of highly non-i.i.d. data severely impairs both the performance of the trained neural network and its convergence rate, increasing the number of communication rounds requested to reach a performance comparable to that of the centralized scenario. As a solution, we propose FedSeq, a novel framework leveraging the sequential training of subgroups of heterogeneous clients, i.e. superclients, to emulate the centralized paradigm in a privacy-compliant way. Given a fixed budget of communication rounds, we show that FedSeq outperforms or match several state-of-the-art federated algorithms in terms of final performance and speed of convergence. Finally, our method can be easily integrated with other approaches available in the literature. Empirical results show that combining existing algorithms with FedSeq further improves its final performance and convergence speed. We test our method on CIFAR-10 and CIFAR-100 and prove its effectiveness in both i.i.d. and non-i.i.d. scenarios.
翻译:联邦学习联合会(FL)允许在不要求当地数据共享的情况下通过边缘设备的合作,在隐私受限制的假设情景下培训机器学习模式,使边缘设备合作而无需当地数据共享。这一方法由于当地数据集和客户的计算差异性差异的不同统计分布而提出了若干挑战。特别是,高度非i.i.d.数据的存在严重损害了受过训练的神经网络的性能及其趋同率,增加了要求达到与集中假设情景相似的性能的通信周期的数目。作为一种解决办法,我们提议FedSeq,这是一个利用对不同客户(即超级客户)分组的连续培训的新框架,以符合隐私的方式仿效集中模式。我们通过固定的通信周期预算,表明FedSeq在最后性能和趋同速度方面优于或符合一些先进的联合算法。最后性表现和趋同率方面,我们的方法很容易与文献中的其他方法结合起来。Empricalalal结果显示,将现有的算法与FedSeqeq的连续培训进一步改进其最后性能和趋同速度。我们测试了CIFAR-10和CIFAR-10-d.和I-10-FAR-I.和I-I-FAR-FAR-D.