Geospatial technologies are becoming increasingly essential in our world for a large range of tasks, such as earth monitoring and natural disaster response. To help improve the applicability and performance of deep learning models on these geospatial tasks, various works have pursued the idea of a geospatial foundation model, i.e., training networks from scratch on a large corpus of remote sensing imagery. However, this approach often requires a significant amount of data and training time to achieve suitable performance, especially when employing large state-of-the-art transformer models. In light of these challenges, we investigate a sustainable approach to building geospatial foundation models. In our investigations, we discover two important factors in the process. First, we find that the selection of pretraining data matters, even within the geospatial domain. We therefore gather a concise yet effective dataset for pretraining. Second, we find that available pretrained models on diverse datasets like ImageNet-22k should not be ignored when building geospatial foundation models, as their representations are still surprisingly effective. Rather, by leveraging their representations, we can build strong models for geospatial applications in a sustainable manner. To this end, we formulate a multi-objective continual pretraining approach for training sustainable geospatial foundation models. We experiment on a wide variety of downstream datasets and tasks, achieving strong performance across the board in comparison to ImageNet baselines and state-of-the-art geospatial pretrained models.
翻译:地球空间技术正在我们的世界中变得日益重要。为了帮助改善这些地理空间任务的深层次学习模型的适用性和性能,各种工作都遵循了地理空间基础模型的设想,即从零开始对大量遥感图像进行大量的培训网络。然而,这一方法往往需要大量的数据和培训时间才能达到适当的性能,特别是在使用大型的先进变压器模型时。鉴于这些挑战,我们调查了建立地理空间基础模型的可持续方法。在我们的调查中,我们发现了其中的两个重要因素。首先,我们发现预培训数据的选择很重要,甚至在地理空间领域也是如此。因此,我们收集了一套简明而有效的地理空间基础模型,用于预培训。第二,我们发现在建立地理空间基础模型时,不应忽视诸如图象网22k等多种数据集的现有预先培训模型,因为这些模型仍然令人惊讶地有效。相反,通过利用这些模型,我们可以以可持续的方式为地理空间空间应用建立强有力的模型。为此,我们制定了一个多目标的、连续的地理空间空间模型前期实验方法,用于在可持续地理空间基础上建立可持续的地理空间模型。我们制定了一个多层次的地理空间模型。我们制定了一个多层次的、连续的地理空间模型,用于在地理空间基础上进行持续的模型。