We present the first active learning tool for fine-grained 3D part labeling, a problem which challenges even the most advanced deep learning (DL) methods due to the significant structural variations among the small and intricate parts. For the same reason, the necessary data annotation effort is tremendous, motivating approaches to minimize human involvement. Our labeling tool iteratively verifies or modifies part labels predicted by a deep neural network, with human feedback continually improving the network prediction. To effectively reduce human efforts, we develop two novel features in our tool, hierarchical and symmetry-aware active labeling. Our human-in-the-loop approach, coined HAL3D, achieves 100% accuracy (barring human errors) on any test set with pre-defined hierarchical part labels, with 80% time-saving over manual effort.
翻译:我们为精细的3D部分标签提供了第一个积极的学习工具。 这个问题甚至对最先进的深层次学习(DL)方法提出了挑战,因为小部分和复杂部分之间的结构差异很大。 出于同样的原因,必要的数据批注努力是巨大的,激发了尽量减少人类参与的方法。 我们的标签工具反复校验或修改由深层神经网络预测的部分标签,人类反馈不断改善网络预测。 为了有效减少人类的努力,我们在工具中开发了两个新的特征,即等级和对称性活性标签。 我们的“人到流”方法,发明了“HAL3D”方法,在任何带有预定义的等级部分标签的测试中都实现了100%的准确性(排除人为错误 ), 在人工操作上节省了80%的时间 。