In the current computer vision era classifying scenes through video surveillance systems is a crucial task. Artificial Intelligence (AI) Video Surveillance technologies have been advanced remarkably while artificial intelligence and deep learning ascended into the system. Adopting the superior compounds of deep learning visual classification methods achieved enormous accuracy in classifying visual scenes. However, the visual classifiers face difficulties examining the scenes in dark visible areas, especially during the nighttime. Also, the classifiers face difficulties in identifying the contexts of the scenes. This paper proposed a deep learning model that reconstructs dark visual scenes to clear scenes like daylight, and the method recognizes visual actions for the autonomous vehicle. The proposed model achieved 87.3 percent accuracy for scene reconstruction and 89.2 percent in scene understanding and detection tasks.
翻译:在目前的计算机视觉时代,通过视频监视系统对场景进行分类是一项关键任务;人工智能(AI)视频监视技术在人工智能和深层学习进入系统的同时,已经取得了显著的进步;采用深深层次学习视觉分类方法的优异组合在对视觉场景进行分类时达到了极大的准确性;然而,视觉分类人员在对暗可见区的场景进行检查时遇到了困难,特别是在夜间;此外,分类人员在确定场景背景时也面临困难;本文件提出了一个深层次的学习模式,即重建黑暗视觉场景以清除日光等场景,该方法承认自主车辆的视觉行动;拟议的模型在现场重建方面实现了87.3%的准确性,在现场理解和探测任务方面达到了89.2%的准确性。