We give the first polynomial time algorithms for escaping from high-dimensional saddle points under a moderate number of constraints. Given gradient access to a smooth function $f \colon \mathbb R^d \to \mathbb R$ we show that (noisy) gradient descent methods can escape from saddle points under a logarithmic number of inequality constraints. This constitutes the first tangible progress (without reliance on NP-oracles or altering the definitions to only account for certain constraints) on the main open question of the breakthrough work of Ge et al. who showed an analogous result for unconstrained and equality-constrained problems. Our results hold for both regular and stochastic gradient descent.
翻译:HOUDINI:从适度约束的鞍点中逃脱。我们为高维鞍点的逃脱提供了首个多项式时间算法,该算法在有限数量的约束下实现。给定对光滑函数 $f \colon \mathbb R^d \to \mathbb R$ 的梯度访问权限,我们展示了(带有噪音的)梯度下降方法可以在对数数量的不等式约束下逃脱鞍点。这是 Ge 等人的突破性工作中的主要问题的首个具体进展(不依赖于 NP-oracles 或仅考虑某些约束的定义)。我们的结果适用于常规梯度下降和随机梯度下降。