This paper considers the discretization of the time-dependent Navier-Stokes equations with the family of inf-sup stabilized Scott-Vogelius pairs recently introduced in [John/Li/Merdon/Rui, arXiv:2206.01242, 2022] for the Stokes problem. Therein, the velocity space is obtained by enriching the H^1-conforming Lagrange element space with some H(div)-conforming Raviart-Thomas functions, such that the divergence constraint is satisfied exactly. In these methods arbitrary shape-regular simplicial grids can be used. In the present paper two alternatives for discretizing the convective terms are considered. One variant leads to a scheme that still only involves volume integrals, and the other variant employs upwinding known from DG schemes. Both variants ensure the conservation of linear momentum and angular momentum in some suitable sense. In addition, a pressure-robust and convection-robust velocity error estimate is derived, i.e., the velocity error bound does not depend on the pressure and the constant in the error bound for the kinetic energy does not blow up for small viscosity. After condensation of the enrichment unknowns and all non-constant pressure unknowns, the method can be reduced to a $P_k-P_0$-like system for arbitrary velocity polynomial degree $k$. Numerical studies verify the theoretical findings.
翻译:本文将基于时间的 Navier- Stokes 方程式与最近[John/Li/Merdon/Rui, arXiv: 2206.01242, 2022] 中为斯托克斯问题引入的 Scott- Vogilius 配对对组合的离散式Scott- Vogilius 配方。 因此, 速度空间是通过以某种 H( div) 匹配的 Raviart- Thomas 函数来丰富 H ⁇ 1 兼容的 Lagrange 元素空间获得的。 这样, 差异限制就能完全得到满足。 在这些方法中, 可以使用任意的形状常规平坦网格 。 在本文中, 考虑两种拆解调调调调的选项。 一种变异种导致一个仍只涉及体积整体的组合, 而其他变式则会通过从DG 方案向上移动。 两种变式都能够确保线性动力和角动的动力。 此外, 压力- 沸压- 和调- 断调- 速度错误估计是, 例如- 任意- 任意- 速度错误后的逻辑- 无法- 将无法- 递解- 度- 将所有恒度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 调整- 度- 度- 度- 度- 度- 度- 度- 调整制- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度- 度-