The pivotal storage density win achieved by solid-state devices over magnetic devices recently is a result of multiple innovations in physics, architecture, and signal processing. Constrained coding is used in Flash devices to increase reliability via mitigating inter-cell interference. Recently, capacity-achieving constrained codes were introduced to serve that purpose. While these codes result in minimal redundancy, they result in non-negligible complexity increase and access speed limitation since pages cannot be read separately. In this paper, we suggest new constrained coding schemes that have low-complexity and preserve the desirable high access speed in modern Flash devices. The idea is to eliminate error-prone patterns by coding data either only on the left-most page (binary coding) or only on the two left-most pages ($4$-ary coding) while leaving data on all the remaining pages uncoded. Our coding schemes are systematic and capacity-approaching. We refer to the proposed schemes as read-and-run (RR) constrained coding schemes. The $4$-ary RR coding scheme is introduced to limit the rate loss. We analyze the new RR coding schemes and discuss their impact on the probability of occurrence of different charge levels. We also demonstrate the performance improvement achieved via RR coding on a practical triple-level cell Flash device.
翻译:最近,固态装置在磁性装置上实现了关键的存储密度,这是物理学、建筑学和信号处理方面的多种创新的结果。在闪电装置中使用了封闭的编码,以通过减少细胞间干扰来提高可靠性。最近,引入了能力限制编码,以达到这一目的。虽然这些编码导致最小冗余,但却导致不可忽略的复杂程度增加和访问速度限制,因为无法单独阅读页数。在本文件中,我们建议采用新的限制编码办法,这种办法具有低复杂性,并保持现代闪电装置中理想的高访问速度。其想法是消除易出错模式,办法是将数据编码仅仅放在最左边的页面(双子编码)上,或者仅仅放在最左边的两页(4美元的编码)上,以提高可靠性,同时将其余所有页面的数据保留在未编码中。我们的编码办法是系统化的,而且使用能力限制页数。我们把拟议的办法称为读和运行(RR)限制编码办法。4美元RRR编码办法用于限制速度损失率。我们分析新的RRR编码办法,以便限制损失率。我们分析新的最左边最左页(4美元)的编码办法,并讨论它们通过升级的升级的升级的升级的升级的升级的频率,并讨论其性能影响。我们通过速度水平上取得的频率的频率的频率。