The classification loss functions used in deep neural network classifiers can be grouped into two categories based on maximizing the margin in either Euclidean or angular spaces. Euclidean distances between sample vectors are used during classification for the methods maximizing the margin in Euclidean spaces whereas the Cosine similarity distance is used during the testing stage for the methods maximizing margin in the angular spaces. This paper introduces a novel classification loss that maximizes the margin in both the Euclidean and angular spaces at the same time. This way, the Euclidean and Cosine distances will produce similar and consistent results and complement each other, which will in turn improve the accuracies. The proposed loss function enforces the samples of classes to cluster around the centers that represent them. The centers approximating classes are chosen from the boundary of a hypersphere, and the pairwise distances between class centers are always equivalent. This restriction corresponds to choosing centers from the vertices of a regular simplex. There is not any hyperparameter that must be set by the user in the proposed loss function, therefore the use of the proposed method is extremely easy for classical classification problems. Moreover, since the class samples are compactly clustered around their corresponding means, the proposed classifier is also very suitable for open set recognition problems where test samples can come from the unknown classes that are not seen in the training phase. Experimental studies show that the proposed method achieves the state-of-the-art accuracies on open set recognition despite its simplicity.


翻译:在深神经网络分类器中使用的分类损失功能可以分为两类,其依据是最大限度地增加欧克利底或角空间的差值。在对欧克利底空间差值最大化的方法进行分类时,将样本矢量之间的偏差用于欧洲克利底空间差值最大化方法的分类,而在对角空间差值最大化方法的测试阶段,将科辛相似距离用于科辛相近的分类功能。本文引入一种新的分类损失,使欧克利底和角空间的差值在同一时间最大化。这样,欧克利底和科辛距离将产生相似和一致的结果,并相互补充,从而反过来改善偏差值。拟议的损失函数在分类中强制使用类别样本样本样本样本的样本集集集集,因此,拟议的分类组群集分类法的分类法比较不易理解。提议的分类法类集的分类法比较不易理解。提议的分类法类中,提议的分类法类分类法的分类法类的分类方法比较不易识别。因此,提议的分类法类中的拟议分类法的分类法类解的分类法方法比较难解,因此,提议的分类法的分类法的分类法类的分类法方法的分类法性方法比较难于其分类法的分类法的分类法系的分类法则比较难。因此,因此,提议的分类法的分类法的分类法的分类法的分类法的分类法的分类法的分类法的分类法的分类法性方法的分类法是其的分类法法则在较难。在提议的分类法方法的分类法方法的分类法则在较难。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月17日
Arxiv
0+阅读 · 2023年2月16日
Arxiv
0+阅读 · 2023年2月7日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员