Inductive transfer learning aims to learn from a small amount of training data for the target task by utilizing a pre-trained model from the source task. Most strategies that involve large-scale deep learning models adopt initialization with the pre-trained model and fine-tuning for the target task. However, when using over-parameterized models, we can often prune the model without sacrificing the accuracy of the source task. This motivates us to adopt model pruning for transfer learning with deep learning models. In this paper, we propose PAC-Net, a simple yet effective approach for transfer learning based on pruning. PAC-Net consists of three steps: Prune, Allocate, and Calibrate (PAC). The main idea behind these steps is to identify essential weights for the source task, fine-tune on the source task by updating the essential weights, and then calibrate on the target task by updating the remaining redundant weights. Under the various and extensive set of inductive transfer learning experiments, we show that our method achieves state-of-the-art performance by a large margin.
翻译:引导性转移学习的目的是利用来源任务中经过预先培训的模型,从少量的培训数据中学习目标任务的培训数据。大多数涉及大规模深层次学习模式的战略都采用经过预先培训的模型进行初始化和对目标任务进行微调。但是,在使用超参数模型时,我们往往可以在不牺牲源任务准确性的情况下对模型进行提取。这促使我们采用模型模拟运行,以便以深层次学习模式进行转移学习。在本文中,我们提议采用PAC-Net,这是基于细线运行的简单而有效的转移学习方法。PAC-Net由三个步骤组成:Prune、分配和Calbrate(PAC)。这些步骤的主要思想是确定源任务的基本重量,通过更新基本重量对源任务进行微调,然后通过更新剩余多余的重量来调整目标任务。在一系列广泛的感应式转移学习实验中,我们表明我们的方法在大范围内取得了最先进的业绩。