Robot skills systems are meant to reduce robot setup time for new manufacturing tasks. Yet, for dexterous, contact-rich tasks, it is often difficult to find the right skill parameters. One strategy is to learn these parameters by allowing the robot system to learn directly on the task. For a learning problem, a robot operator can typically specify the type and range of values of the parameters. Nevertheless, given their prior experience, robot operators should be able to help the learning process further by providing educated guesses about where in the parameter space potential optimal solutions could be found. Interestingly, such prior knowledge is not exploited in current robot learning frameworks. We introduce an approach that combines user priors and Bayesian optimization to allow fast optimization of robot industrial tasks at robot deployment time. We evaluate our method on three tasks that are learned in simulation as well as on two tasks that are learned directly on a real robot system. Additionally, we transfer knowledge from the corresponding simulation tasks by automatically constructing priors from well-performing configurations for learning on the real system. To handle potentially contradicting task objectives, the tasks are modeled as multi-objective problems. Our results show that operator priors, both user-specified and transferred, vastly accelerate the discovery of rich Pareto fronts, and typically produce final performance far superior to proposed baselines.
翻译:机器人技能系统旨在减少机器人为新的制造任务设定的时间。 然而,对于超时的、接触丰富的任务,通常很难找到正确的技能参数。 一种策略是让机器人系统直接学习任务。 对于一个学习问题,机器人操作员一般可以指定参数的值类型和范围。 然而,根据他们以往的经验,机器人操作员应该能够帮助进一步学习过程,办法是提供在参数空间潜在最佳解决方案中可以找到的有教育的假设。有趣的是,在目前的机器人学习框架中,没有利用这种先前的知识。我们引入了一种方法,将用户前期和巴耶斯优化结合起来,以便在机器人部署时能够快速优化机器人工业任务。我们评估了在模拟中学习的三项任务的方法,以及直接在真正的机器人系统中学习的两项任务。此外,我们可以通过自动构建业绩良好的前期配置来帮助相应的模拟任务,从而在实际系统中学习。 有趣的是,这些任务可能与任务相矛盾的目标没有被利用。 我们引入了一种方法,即将用户前期和巴耶斯优化的优化,我们的结果显示操作者在最高级的前沿、最高级的测试之前, 和最高级的基线都被转移。