"A data scientist is tasked with developing a low-cost surgical VQA system for a 2-month workshop. Due to data sensitivity, she collects 50 hours of surgical video from a hospital, requiring two months for privacy approvals. Privacy restrictions prevent uploading data to platforms like ChatGPT, so she assembles one annotator and a medical expert to manually create QA pairs. This process takes three weeks and costs over $10,000. The trained model provides accurate responses within the limited data scope but lacks broader generalizability, completing the project in 3 months." To simplify the challenges presented in the scenario above. In this paper, we replace the image input with text for Vision-language training. Inspired by prior noise injection methods to reduce modality gaps, we introduce Adaptive ranged cosine Similarity injected noise (ArcSin). First, we introduce an innovative adaptive noise scale that effectively generates the textual elements with more variability while preserving the original text feature's integrity. Second, a similarity pool strategy is employed, expanding the domain generalization potential by broadening the overall noise scale. This dual strategy effectively broadens the scope of the original domain while safeguarding content integrity. Our empirical results demonstrate that these models closely rival those trained on images in terms of performance. Specifically, our method exhibits substantial improvements over the previous state-of-the-art, achieving gains of 1.9 and 1.1 CIDEr points in S-Cap and M-Cap, respectively. Additionally, we observe increases of 0.5 percentage points (pp), 1.4 pp, and 1.4 pp in accuracy for VQA, VQA-E, and VE, respectively, pushing the boundaries of what is achievable within the constraints of image-trained model benchmarks.
翻译:暂无翻译