Machine learning approaches achieve high accuracy for text recognition and are therefore increasingly used for the transcription of handwritten historical sources. However, using machine learning in production requires a streamlined end-to-end machine learning pipeline that scales to the dataset size, and a model that achieves high accuracy with few manual transcriptions. In addition, the correctness of the model results must be verified. This paper describes our lessons learned developing, tuning, and using the Occode end-to-end machine learning pipeline for transcribing 7,3 million rows with handwritten occupation codes in the Norwegian 1950 population census. We achieve an accuracy of 97% for the automatically transcribed codes, and we send 3% of the codes for manual verification. We verify that the occupation code distribution found in our result matches the distribution found in our training data which should be representative for the census as a whole. We believe our approach and lessons learned are useful for other transcription projects that plan to use machine learning in production. The source code is available at: https://github.com/uit-hdl/rhd-codes
翻译:机器学习方法在文本识别方面达到很高的精确度,因此越来越多地用于手写历史来源的抄录。然而,在生产过程中使用机器学习需要简化的端到端机学习管道,该管道的尺寸要达到数据集大小,并需要达到高精度的模型,只有很少的人工抄录。此外,模型结果的正确性必须加以核实。本文件描述了我们的经验教训,开发、调整和使用Occo代码端到端的机学习管道,用于在挪威1950年人口普查中用手写职业代码对7300万行进行抄录。我们实现了自动转录代码97%的准确度,我们发送了3%的代码进行人工核查。我们核查我们的结果中发现的职业代码分布与我们培训数据中的分布相匹配,而这些数据应当对整个普查具有代表性。我们认为,我们的方法和经验教训对于计划使用机器学习制作的其他转录项目是有用的。源代码见:https://github.com/uit-hdl/rhd-code。