A cable-driven soft-bodied robot with redundancy can conduct the trajectory tracking task and in the meanwhile fulfill some extra constraints, such as tracking through an end-effector in designated orientation, or get rid of the evitable manipulator-obstacle collision. Those constraints require rational planning of the robot motion. In this work, we derived the compressible curvature kinematics of a cable-driven soft robot which takes the compressible soft segment into account. The motion planning of the soft robot for a trajectory tracking task in constrained conditions, including fixed orientation end-effector and manipulator-obstacle collision avoidance, has been investigated. The inverse solution of cable actuation was formulated as a damped least-square optimization problem and iteratively computed off-line. The performance of trajectory tracking and the obedience to constraints were evaluated via the simulation we made open-source, as well as the prototype experiments. The method can be generalized to the similar multisegment cable-driven soft robotic systems by customizing the robot parameters for the prior motion planning of the manipulator.
翻译:具有冗余功能的有线驱动软体机器人可以进行轨迹跟踪任务,并同时完成一些额外的限制,例如通过指定方向的终端效应器跟踪,或者摆脱可避免的操纵者-障碍碰撞。这些限制要求对机器人运动进行合理的规划。在这项工作中,我们从一个有线驱动软体机器人的压缩曲线运动中得出将压缩软体部分纳入考虑的压缩软体部分。软体机器人在有限条件下进行轨迹跟踪任务的行动规划,包括固定定向终端效应器和操纵者-障碍碰撞的避免,已经受到调查。电缆作用的反向解决方案被设计成一个最小的最小优化障碍,并反复计算离线。轨迹跟踪的性能和对约束的顺从性通过我们制造开源的模拟以及原型实验进行了评估。该方法可以通过对操纵者先前动作规划的机器人参数进行定制,推广到类似的多层电缆驱动软体机器人系统。