A cable-driven soft-bodied robot with redundancy can conduct the trajectory tracking task and in the meanwhile fulfill some extra constraints, such as tracking through an end-effector in designated orientation, or get rid of the evitable manipulator-obstacle collision. Those constraints require rational planning of the robot motion. In this work, we derived the compressible curvature kinematics of a cable-driven soft robot which takes the compressible soft segment into account. The motion planning of the soft robot for a trajectory tracking task in constrained conditions, including fixed orientation end-effector and manipulator-obstacle collision avoidance, has been investigated. The inverse solution of cable actuation was formulated as a damped least-square optimization problem and iteratively computed off-line. The performance of trajectory tracking and the obedience to constraints were evaluated via the simulation we made open-source, as well as the prototype experiments. The method can be generalized to the similar multisegment cable-driven soft robotic systems by customizing the robot parameters for the prior motion planning of the manipulator.


翻译:具有冗余功能的有线驱动软体机器人可以进行轨迹跟踪任务,并同时完成一些额外的限制,例如通过指定方向的终端效应器跟踪,或者摆脱可避免的操纵者-障碍碰撞。这些限制要求对机器人运动进行合理的规划。在这项工作中,我们从一个有线驱动软体机器人的压缩曲线运动中得出将压缩软体部分纳入考虑的压缩软体部分。软体机器人在有限条件下进行轨迹跟踪任务的行动规划,包括固定定向终端效应器和操纵者-障碍碰撞的避免,已经受到调查。电缆作用的反向解决方案被设计成一个最小的最小优化障碍,并反复计算离线。轨迹跟踪的性能和对约束的顺从性通过我们制造开源的模拟以及原型实验进行了评估。该方法可以通过对操纵者先前动作规划的机器人参数进行定制,推广到类似的多层电缆驱动软体机器人系统。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
6+阅读 · 2021年6月24日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
【Manning新书】现代Java实战,592页pdf
专知会员服务
100+阅读 · 2020年5月22日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
相关资讯
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员