Kinodynamic motion planning for non-holomonic mobile robots is a challenging problem that is lacking a universal solution. One of the computationally efficient ways to solve it is to build a geometric path first and then transform this path into a kinematically feasible one. Gradient-informed Path Smoothing (GRIPS) is a recently introduced method for such transformation. GRIPS iteratively deforms the path and adds/deletes the waypoints while trying to connect each consecutive pair of them via the provided steering function that respects the kinematic constraints. The algorithm is relatively fast but, unfortunately, does not provide any guarantees that it will succeed. In practice, it often fails to produce feasible trajectories for car-like robots with large turning radius. In this work, we introduce a range of modifications that are aimed at increasing the success rate of GRIPS for car-like robots. The main enhancement is adding the additional step that heuristically samples waypoints along the bottleneck parts of the geometric paths (such as sharp turns). The results of the experimental evaluation provide a clear evidence that the success rate of the suggested algorithm is up to 40% higher compared to the original GRIPS and hits the bar of 90%, while its runtime is lower.
翻译:用于非声波移动机器人的 Kino 动态运动规划是一个具有挑战性的问题,目前缺乏一个通用解决方案。 计算高效的解决方案之一是首先建立几何路径,然后将这条路径转换为运动可行的路径。 渐进知情平滑路径( GRIIPS) 是最近引入的这种转换方法。 GRIPS 迭代地变形了路径, 并添加/ 删除了路径点, 同时试图通过尊重运动限制的提供方向功能连接每对连续对对。 算法相对较快, 但不幸的是, 无法提供任何成功保证。 在实践中, 它往往无法为大转折半径的汽车类机器人提供可行的轨迹。 在这项工作中, 我们引入了一系列旨在增加GRIPS 成功率的修改, 目的是提高类似汽车的机器人的成功率。 主要改进是添加额外步骤, 沿几何路径的瓶颈部分( 如直转率更高) 。 实验性评估的结果提供了一个清晰的证据证明, 类似汽车半径的机器人的轨迹将成功率定出为 90 %, 而原始的Gral 算算法则显示为40 成功率 。