The asymptotic normality for a large family of eigenvalue statistics of a general sample covariance matrix is derived under the ultra-high dimensional setting, that is, when the dimension to sample size ratio $p/n \to \infty$. Based on this CLT result, we first adapt the covariance matrix test problem to the new ultra-high dimensional context. Then as a second application, we develop a new test for the separable covariance structure of a matrix-valued white noise. Simulation experiments are conducted for the investigation of finite-sample properties of the general asymptotic normality of eigenvalue statistics, as well as the second test for separable covariance structure of matrix-valued white noise.


翻译:在超高维设置下,即当样本规模比的维度为$p/n\\ to\infty$。根据这一CLT结果,我们首先将共变量矩阵测试问题适应新的超高维环境。然后,作为第二个应用,我们为一个总样本值的白色噪音的可分离共变量结构开发了一个新的测试。为调查总样本值统计的有限抽样特性进行了模拟实验,并对基值值白噪音的可分离共变量结构进行了第二次测试。

0
下载
关闭预览

相关内容

在概率论和统计学中,协方差矩阵(也称为自协方差矩阵,色散矩阵,方差矩阵或方差-协方差矩阵)是平方矩阵,给出了给定随机向量的每对元素之间的协方差。 在矩阵对角线中存在方差,即每个元素与其自身的协方差。
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月4日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
0+阅读 · 2021年11月2日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
目标检测中的Consistent Optimization
极市平台
6+阅读 · 2019年4月23日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员