Language models of code have demonstrated state-of-the-art performance across various software engineering and source code analysis tasks. However, their demanding computational resource requirements and consequential environmental footprint remain as significant challenges. This work introduces ALPINE, an adaptive programming language-agnostic pruning technique designed to substantially reduce these models' computational overhead. The proposed method offers a pluggable layer that can be integrated with all Transformer-based models. With ALPINE, input sequences undergo adaptive compression throughout the pipeline, reaching a size up to $\times 3$ less their initial size, resulting in significantly reduced computational load. Our experiments on two software engineering tasks, defect prediction and code clone detection across three language models CodeBERT, GraphCodeBERT and UniXCoder show that ALPINE achieves up to a 50% reduction in FLOPs, a 58.1% decrease in memory footprint, and a 28.1% improvement in throughput on average. This led to a reduction in CO2 by up to $44.85$%. Importantly, it achieves the reduction in computation resources while maintaining up to 98.1% of the original predictive performance. These findings highlight the potential of ALPINE in making language models of code more resource-efficient and accessible while preserving their performance, contributing to the overall sustainability of adopting language models in software development. Also, it sheds light on redundant and noisy information in source code analysis corpora, as shown by the substantial sequence compression achieved by ALPINE.


翻译:暂无翻译

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
304+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
137+阅读 · 2019年9月24日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
相关基金
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员