This paper primarily focuses on computing the Euclidean projection of a vector onto the $\ell_{p}$ ball in which $p\in(0,1)$. Such a problem emerges as the core building block in statistical machine learning and signal processing tasks because of its ability to promote the sparsity of the desired solution. However, efficient numerical algorithms for finding the projections are still not available, particularly in large-scale optimization. To meet this challenge, we first derive the first-order necessary optimality conditions of this problem. Based on this characterization, we develop a novel numerical approach for computing the stationary point by solving a sequence of projections onto the reweighted $\ell_{1}$-balls. This method is practically simple to implement and computationally efficient. Moreover, the proposed algorithm is shown to converge uniquely under mild conditions and has a worst-case $O(1/\sqrt{k})$ convergence rate. Numerical experiments demonstrate the efficiency of our proposed algorithm.
翻译:本文主要侧重于计算 $\ ell ⁇ p} $ p\ $ ball 的向量的 Euclide 投影, 美元( 0. 1 美元) 美元( 0. 1 美元) 。 这个问题是统计机学习和信号处理任务的核心构件, 因为它能够促进所希望的解决方案的广度。 然而, 寻找向量的高效数字算法仍然缺乏, 特别是在大规模优化方面。 为了迎接这一挑战, 我们首先得出这一问题的第一阶点所需的最佳性条件 。 基于此特性, 我们开发了一种新颖的数字方法, 用于计算固定点, 方法是用重标值 $\ ell ⁇ 1 $ 美元( $) 的预测序列来计算固定点 。 这个方法实际上容易执行和计算有效 。 此外, 拟议的算法显示在温和条件下具有独特性, 并具有最差的 $O( 1/ sqrt{k} $( $) ) 趋同率 。 。 。 数字实验显示了我们提议的算法的效率 。