Incorporating factual knowledge into pre-trained language models (PLM) such as BERT is an emerging trend in recent NLP studies. However, most of the existing methods combine the external knowledge integration module with a modified pre-training loss and re-implement the pre-training process on the large-scale corpus. Re-pretraining these models is usually resource-consuming, and difficult to adapt to another domain with a different knowledge graph (KG). Besides, those works either cannot embed knowledge context dynamically according to textual context or struggle with the knowledge ambiguity issue. In this paper, we propose a novel knowledge-aware language model framework based on fine-tuning process, which equips PLM with a unified knowledge-enhanced text graph that contains both text and multi-relational sub-graphs extracted from KG. We design a hierarchical relational-graph-based message passing mechanism, which can allow the representations of injected KG and text to mutually update each other and can dynamically select ambiguous mentioned entities that share the same text. Our empirical results show that our model can efficiently incorporate world knowledge from KGs into existing language models such as BERT, and achieve significant improvement on the machine reading comprehension (MRC) task compared with other knowledge-enhanced models.


翻译:将事实知识纳入培训前语言模型(PLM),如BERT等实际知识纳入培训前语言模型(PLM)是最近国家学习计划研究中出现的一个新趋势,然而,大多数现有方法将外部知识整合模块与经修改的培训前损失和重新实施大规模培训前程序相结合。对这些模型进行再培训通常耗费资源,而且难以适应使用不同知识图表(KG)的另一个领域。此外,这些工程要么无法根据文字背景动态地将知识背景纳入知识背景,要么无法与知识模糊问题进行斗争。在本文中,我们提出了一个以微调程序为基础的新的有知识的语言模型框架,为PLM提供统一的知识强化文本图,该图包含从KG提取的文本和多关系分图。我们设计了一个基于等级关系绘图的信息传递机制,使注入的KG和文本能够相互更新,并且能够动态地选择共享同一文本的模糊实体。我们的经验结果显示,我们的模型能够有效地将KGs的世界知识纳入现有的语言模型中,如BERRTC模型,并实现对机器任务的重大改进。

0
下载
关闭预览

相关内容

通过学习、实践或探索所获得的认识、判断或技能。
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
28+阅读 · 2021年10月1日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员