Knots are commonly represented and manipulated via diagrams, which are decorated planar graphs. When such a knot diagram has low treewidth, parameterized graph algorithms can be leveraged to ensure the fast computation of many invariants and properties of the knot. It was recently proved that there exist knots which do not admit any diagram of low treewidth, and the proof relied on intricate low-dimensional topology techniques. In this work, we initiate a thorough investigation of tree decompositions of knot diagrams (or more generally, diagrams of spatial graphs) using ideas from structural graph theory. We define an obstruction on spatial embeddings that forbids low tree width diagrams, and we prove that it is optimal with respect to a related width invariant. We then show the existence of this obstruction for knots of high representativity, which include for example torus knots, providing a new and self-contained proof that those do not admit diagrams of low treewidth. This last step is inspired by a result of Pardon on knot distortion.
翻译:Knots 通常通过图表代表并被操纵,这些图表被装饰成平面图。 当这样的结图树宽度低时, 参数化的图形算法可以被利用以确保快速计算许多树宽度和结节特性。 最近已经证明, 结并不认可任何低树宽度图, 并且证据依赖于复杂的低维地形技术。 在这项工作中, 我们利用结构图理论的理念, 对结图( 或更一般地说, 空间图) 的树分解进行彻底调查。 我们定义了空间嵌入中的阻塞, 禁止低树宽度图, 并且我们证明对于相关宽度的宽度是最佳的。 我们随后展示了高代表性结存在这种阻塞, 例如, 包括结结, 提供了新的和自成证据, 证明那些不接受低树宽度图。 最后一步是由关于结扭曲的澄清结果所启发的 。</s>