For graphs $G$ and $H$, we say that $G$ is $H$-free if it does not contain $H$ as an induced subgraph. Already in the early 1980s Alekseev observed that if $H$ is connected, then the \textsc{Max Weight Independent Set} problem (MWIS) remains \textsc{NP}-hard in $H$-free graphs, unless $H$ is a path or a subdivided claw, i.e., a graph obtained from the three-leaf star by subdividing each edge some number of times (possibly zero). Since then determining the complexity of MWIS in these remaining cases is one of the most important problems in algorithmic graph theory. A general belief is that the problem is polynomial-time solvable, which is witnessed by algorithmic results for graphs excluding some small paths or subdivided claws. A more conclusive evidence was given by the recent breakthrough result by Gartland and Lokshtanov [FOCS 2020]: They proved that MWIS can be solved in quasipolynomial time in $H$-free graphs, where $H$ is any fixed path. If $H$ is an arbitrary subdivided claw, we know much less: The problem admits a QPTAS and a subexponential-time algorithm [Chudnovsky et al., SODA 2019]. In this paper we make an important step towards solving the problem by showing that for any subdivided claw $H$, MWIS is polynomial-time solvable in $H$-free graphs of bounded degree.


翻译:对于GG$和H$,我们说如果它不包含以H美元作为诱导子图,那么G$是免费的。早在1980年代初,Alekseev就观察到,如果$H美元连接起来,那么,textsc{max Weight 独立Set}问题(MWIS)在$-H美元的图表中仍然是硬的,除非$H是一条路径或一种分解的爪子,也就是说,如果它不包含每端有一段时间(可能为零)地从三利af恒星那里获得的图表是免费的。自从那时起,确定MWIS在这些剩余案例中的复杂性,是算法图理论中最重要的问题之一。一般的信念是,问题在于:在不含某些小路径或亚化爪的图表中,如果Gartovland和Lokshtanov最近取得突破性结果,那么一个更确切的证据就是,在OFC2020年以每端点(可能为零)以美元平面的平价解算,那么,MWIS公司可以以美元平面的平面的平价方法来解决。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Learning to Importance Sample in Primary Sample Space
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员