The Barlow Twins self-supervised learning objective requires neither negative samples or asymmetric learning updates, achieving results on a par with the current state-of-the-art within Computer Vision. As such, we present Audio Barlow Twins, a novel self-supervised audio representation learning approach, adapting Barlow Twins to the audio domain. We pre-train on the large-scale audio dataset AudioSet, and evaluate the quality of the learnt representations on 18 tasks from the HEAR 2021 Challenge, achieving results which outperform, or otherwise are on a par with, the current state-of-the-art for instance discrimination self-supervised learning approaches to audio representation learning. Code at https://github.com/jonahanton/SSL_audio.
翻译:巴洛双胞胎自我监督的学习目标既不要求负面抽样,也不要求非对称学习更新,在计算机视野中取得与当前最新技术水平相同的成果。因此,我们介绍Audio Barlow Twins, 一种由自我监督的新型自我代言学习方法,使巴洛双胞胎适应音域。我们为大规模音频数据集音频服务准备了培训,并评估了在 " 耳麦2021挑战 " 的18项任务中学习到的表述的质量,取得了优于或与当前最新技术水平相同的结果,例如,在语音代言学习中采取由自我监督的学习方法。代码见https://github.com/jonahanton/SSL_audio。