Private set intersection (PSI) allows two mutually untrusting parties to compute an intersection of their sets, without revealing information about items that are not in the intersection. This work introduces a PSI variant called distance-aware PSI (DA-PSI) for sets whose elements lie in a metric space. DA-PSI returns pairs of items that are within a specified distance threshold of each other. This paper puts forward DA-PSI constructions for two metric spaces: (i) Minkowski distance of order 1 over the set of integers (i.e., for integers $a$ and $b$, their distance is $|a-b|$); and (ii) Hamming distance over the set of binary strings of length $\ell$. In the Minkowski DA-PSI protocol, the communication complexity scales logarithmically in the distance threshold and linearly in the set size. In the Hamming DA-PSI protocol, the communication volume scales quadratically in the distance threshold and is independent of the dimensionality of string length $\ell$. Experimental results with real applications confirm that DA-PSI provides more effective matching at lower cost than naive solutions.
翻译:私有的十字路口使两个互不信任的各方能够计算其各组的交叉点,而没有透露非交叉点的物品的信息。 这项工作引入了一个PSI变方, 其元素位于一个公尺空间内的各组元素称为远视 PSI( DA- PSI) 。 DA- PSI 返回了在指定距离阈值之内的两对物品。 本文提出了两个公尺空间的DA- PSI 构造:(一) Minkowski 顺序1比整数1的距离( 即整数$- 美元和 $b$, 它们的距离是 $- a- b $ ; 和 (二) 长度为 $\\ $ 的双弦的宽度距离。 在 Minkowski DA- PSI 协议中, 通信复杂度在指定距离阈值内, 直线尺寸的逻辑尺度。 在Hamming DA- PSI 协议中, 通信量比例在距离阈值范围内, 和距离阈值长度 $\\ $ 美元 的尺寸之外, ; 实验性结果与实际应用比DA- PSA- PSI 提供更有效的解决方案更低的成本。