The rapid advancement of conversational and chat-based language models has led to remarkable progress in complex task-solving. However, their success heavily relies on human input to guide the conversation, which can be challenging and time-consuming. This paper explores the potential of building scalable techniques to facilitate autonomous cooperation among communicative agents and provide insight into their "cognitive" processes. To address the challenges of achieving autonomous cooperation, we propose a novel communicative agent framework named role-playing. Our approach involves using inception prompting to guide chat agents toward task completion while maintaining consistency with human intentions. We showcase how role-playing can be used to generate conversational data for studying the behaviors and capabilities of chat agents, providing a valuable resource for investigating conversational language models. Our contributions include introducing a novel communicative agent framework, offering a scalable approach for studying the cooperative behaviors and capabilities of multi-agent systems, and open-sourcing our library to support research on communicative agents and beyond. The GitHub repository of this project is made publicly available on: https://github.com/lightaime/camel.


翻译:随着对话式和基于聊天的语言模型的快速发展,解决复杂任务的能力取得了显着进展。然而,它们的成功极大地依赖于人类输入,以引导对话,这可能是具有挑战性和耗时的。本文探讨了构建可扩展的技术,以促进沟通代理之间的自主合作,并提供有关它们的“认知”过程的见解的潜力。为了解决实现自主合作的挑战,我们提出了一种名为角色扮演的新型沟通代理框架。我们的方法涉及使用启示提示指导聊天代理完成任务,同时保持与人类意图的一致性。我们展示了角色扮演如何用于生成用于研究聊天代理的行为和能力的对话数据,为调查会话语言模型提供了有价值的资源。我们的贡献包括引入一种新的沟通代理框架,提供一种可扩展的方法来研究多代理系统的协作行为和能力,并公开我们的库以支持沟通代理和其他领域的研究。此项目的 GitHub 存储库已公开在以下网址:https://github.com/lightaime/camel。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
专知会员服务
208+阅读 · 2019年8月30日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Understanding HTML with Large Language Models
Arxiv
0+阅读 · 2023年5月19日
A Survey of Large Language Models
Arxiv
408+阅读 · 2023年3月31日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
专知会员服务
208+阅读 · 2019年8月30日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员