In recent years, emerging storage hardware technologies have focused on divergent goals: better performance or lower cost-per-bit. Correspondingly, data systems that employ these technologies are typically optimized either to be fast (but expensive) or cheap (but slow). We take a different approach: by architecting a storage engine to natively utilize two tiers of fast and low-cost storage technologies, we can achieve a Pareto-efficient balance between performance and cost-per-bit. This paper presents the design and implementation of PrismDB, a novel key-value store that exploits two extreme ends of the spectrum of modern NVMe storage technologies (3D XPoint and QLC NAND) simultaneously. Our key contribution is how to efficiently migrate and compact data between two different storage tiers. Inspired by the classic cost-benefit analysis of log cleaning, we develop a new algorithm for multi-tiered storage compaction that balances the benefit of reclaiming space for hot objects in fast storage with the cost of compaction I/O in slow storage. Compared to the standard use of RocksDB on flash in datacenters today, PrismDB's average throughput on tiered storage is 3.3$\times$ faster and its read tail latency is 2$\times$ better, using equivalently-priced hardware.


翻译:近年来,新兴的储存硬件技术侧重于不同的目标:改善性能或降低成本。相应地,使用这些技术的数据系统通常最优化,要么快速(但昂贵),要么廉价(但缓慢)。我们采取不同的做法:通过设计一个储存引擎,本地使用两层快速和低成本储存技术,我们可以在性能和成本-一位之间实现Pareto高效平衡。本文介绍了PrismDB的设计和实施,这是一个新型的关键价值商店,它同时开发了现代NVME储存技术(3D XPoint和QLC NAND)的两端。我们的主要贡献是如何在两个不同的储存层之间有效地迁移和压缩数据。在对日志清理的典型成本效益分析的启发下,我们为多层储存压缩技术开发了一种新的算法,将快速储存中热物体的回收空间的好处与慢储存中压缩一/O的成本相平衡。与今天在数据中心闪光中标准使用RocksDB的标准使用值(3DPrismDG$)相比, PrisismDB的平比值平均读数值为3.3。

0
下载
关闭预览

相关内容

【Google】高效Transformer综述,Efficient Transformers: A Survey
专知会员服务
66+阅读 · 2022年3月17日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
27+阅读 · 2022年2月20日
专知会员服务
61+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
12+阅读 · 2018年1月11日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员