Having access to accurate game state information is of utmost importance for any game artificial intelligence task including game-playing, testing, player modeling, and procedural content generation. Self-Supervised Learning (SSL) techniques have shown to be capable of inferring accurate game state information from the high-dimensional pixel input of game's rendering into compressed latent representations. Contrastive Learning is one such popular paradigm of SSL where the visual understanding of the game's images comes from contrasting dissimilar and similar game states defined by simple image augmentation methods. In this study, we introduce a new game scene augmentation technique -- named GameCLR -- that takes advantage of the game-engine to define and synthesize specific, highly-controlled renderings of different game states, thereby, boosting contrastive learning performance. We test our GameCLR contrastive learning technique on images of the CARLA driving simulator environment and compare it against the popular SimCLR baseline SSL method. Our results suggest that GameCLR can infer the game's state information from game footage more accurately compared to the baseline. The introduced approach allows us to conduct game artificial intelligence research by directly utilizing screen pixels as input.
翻译:获取准确的游戏状态信息对于任何游戏人工智能任务,包括游戏游戏游戏游戏、测试、玩家建模和程序内容生成,都至关重要。自我支持学习(SSL)技术已经证明能够从游戏的高维像素输入中推断出游戏的准确状态信息,将其转化为压缩的潜表。反向学习是SSL中最受欢迎的范例之一,通过这种模式,对游戏图像的视觉理解来自以简单的图像增强方法定义的不同和相似的游戏状态。在这个研究中,我们引入了一种新的游戏场景增强技术,即名为 GameClLR -- 利用游戏引擎来定义和合成不同游戏状态的具体、高度控制的图像,从而提升了对比性学习性能。我们测试我们的游戏CLR在 CAR驱动模拟环境图像上的对比性学习技术,并将其与流行的 SimCLR 基线 SSL 方法进行比较。我们的研究结果表明, GameCLR 可以将游戏的状态信息从游戏镜头到基线中更精确地推断出来。引入的方法使我们能够通过直接使用屏幕定位输入来进行游戏人造智能研究。