The class of algorithms called Hessian Estimation Evolution Strategies (HE-ESs) update the covariance matrix of their sampling distribution by directly estimating the curvature of the objective function. The approach is practically efficient, as attested by respectable performance on the BBOB testbed, even on rather irregular functions. In this paper we formally prove two strong guarantees for the (1+4)-HE-ES, a minimal elitist member of the family: stability of the covariance matrix update, and as a consequence, linear convergence on all convex quadratic problems at a rate that is independent of the problem instance.


翻译:被称为赫西安估计演变战略(HE-ESs)的算法类别通过直接估计客观功能的曲线来更新其抽样分布的共变矩阵。 这种方法在实际中是有效的,通过BBBB测试台的可贵性表现证明,即使功能不太正常,我们也证明了这一点。 在本文中,我们正式证明家庭最精英成员HE-ES的两个强有力的保证:共变矩阵更新的稳定性,以及因此,在所有共振四方问题上以独立于问题实例的速率线性趋同。

0
下载
关闭预览

相关内容

ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年8月13日
Arxiv
0+阅读 · 2021年8月12日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员