A standard informal method for analyzing the asymptotic complexity of a program is to extract a recurrence that describes its cost in terms of the size of its input, and then to compute a closed-form upper bound on that recurrence. We give a formal account of that method for functional programs in a higher-order language with let-polymorphism The method consists of two phases. In the first phase, a monadic translation is performed to extract a cost-annotated version of the original program. In the second phase, the extracted program is interpreted in a model. The key feature of this second phase is that different models describe different notions of size. This plays out specifically for values of inductive type, where different notions of size may be appropriate depending on the analysis, and for polymorphic functions, where we show that the notion of size for a polymorphic function can be described formally as the data that is common to the notions of size of its instances. We give several examples of different models that formally justify various informal cost analyses to show the applicability of our approach.


翻译:分析一个程序无症状复杂性的一个标准非正式方法,是提取一个重现,用输入大小来描述其成本,然后根据重现计算一个封闭式的上层框。我们用高阶语言用一流的一流语言正式说明该方法的功能性程序。方法由两个阶段组成。在第一阶段,进行一个monadic翻译,以提取原始程序的成本附加说明版本。在第二阶段,提取的程序在一个模型中解释。第二阶段的关键特征是不同的模型描述不同的规模概念。这具体表现在进化型的数值上方,根据分析,不同的规模概念可能是合适的,多形态函数的大小概念可以正式描述为与其实例大小概念共同使用的数据。我们举出了不同模型的几个例子,这些不同模型正式证明各种非正式成本分析的可适用性,以显示我们方法的可适用性。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
专知会员服务
113+阅读 · 2020年10月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年12月12日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年4月26日
Arxiv
0+阅读 · 2021年4月26日
Arxiv
0+阅读 · 2021年4月24日
Arxiv
0+阅读 · 2021年4月16日
VIP会员
相关VIP内容
最新《自监督表示学习》报告,70页ppt
专知会员服务
85+阅读 · 2020年12月22日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
专知会员服务
113+阅读 · 2020年10月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年12月12日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员