Motivated by the Iowa Fluoride Study (IFS) dataset, which comprises zero-inflated multi-level ordinal responses on tooth fluorosis, we develop an estimation scheme leveraging generalized estimating equations (GEEs) and James-Stein shrinkage. Previous analyses of this cohort study primarily focused on caries (count response) or employed a Bayesian approach to the ordinal fluorosis outcome. This study is based on the expanded dataset that now includes observations for age 23, whereas earlier works were restricted to ages 9, 13, and/or 17 according to the participants' ages at the time of measurement. The adoption of a frequentist perspective enhances the interpretability to a broader audience. Over a choice of several covariance structures, separate models are formulated for the presence (zero versus non-zero score) and severity (non-zero ordinal scores) of fluorosis, which are then integrated through shared regression parameters. This comprehensive framework effectively identifies risk or protective effects of dietary and non-dietary factors on dental fluorosis.
翻译:暂无翻译