Solution concepts such as Nash Equilibria, Correlated Equilibria, and Coarse Correlated Equilibria are useful components for many multiagent machine learning algorithms. Unfortunately, solving a normal-form game could take prohibitive or non-deterministic time to converge, and could fail. We introduce the Neural Equilibrium Solver which utilizes a special equivariant neural network architecture to approximately solve the space of all games of fixed shape, buying speed and determinism. We define a flexible equilibrium selection framework, that is capable of uniquely selecting an equilibrium that minimizes relative entropy, or maximizes welfare. The network is trained without needing to generate any supervised training data. We show remarkable zero-shot generalization to larger games. We argue that such a network is a powerful component for many possible multiagent algorithms.
翻译:解决方案概念,如Nash Equilibria、Corcontel Equilibria 和 Coarse Cor contern Equilibria 等概念是许多多试剂机器学习算法的有用组成部分。 不幸的是,解决一个正常形式游戏可能需要令人望而却步或非决定性的时间才能趋同,而且可能会失败。我们引入了神经平衡解答器,它利用一个特殊的等异性神经网络架构来大致解决所有固定形状游戏的空间、购买速度和确定性。我们定义了一个灵活的平衡选择框架,它能够独家选择一个能够最大限度地减少相对变异性或最大限度地提高福利的平衡。这个网络经过培训,不需要生成任何受监督的培训数据。我们向更大的游戏展示了显著的零光谱化。我们说,这样一个网络是许多可能的多试剂算法的强大组成部分。