Incomplete multi-view data, where certain views are entirely missing for some samples, poses significant challenges for traditional multi-view clustering methods. Existing deep incomplete multi-view clustering approaches often rely on static fusion strategies or two-stage pipelines, leading to suboptimal fusion results and error propagation issues. To address these limitations, this paper proposes a novel incomplete multi-view clustering framework based on Hierarchical Semantic Alignment and Cooperative Completion (HSACC). HSACC achieves robust cross-view fusion through a dual-level semantic space design. In the low-level semantic space, consistency alignment is ensured by maximizing mutual information across views. In the high-level semantic space, adaptive view weights are dynamically assigned based on the distributional affinity between individual views and an initial fused representation, followed by weighted fusion to generate a unified global representation. Additionally, HSACC implicitly recovers missing views by projecting aligned latent representations into high-dimensional semantic spaces and jointly optimizes reconstruction and clustering objectives, enabling cooperative learning of completion and clustering. Experimental results demonstrate that HSACC significantly outperforms state-of-the-art methods on five benchmark datasets. Ablation studies validate the effectiveness of the hierarchical alignment and dynamic weighting mechanisms, while parameter analysis confirms the model's robustness to hyperparameter variations.
翻译:暂无翻译