Models trained from real-world data tend to imitate and amplify social biases. Although there are many methods suggested to mitigate biases, they require a preliminary information on the types of biases that should be mitigated (e.g., gender or racial bias) and the social groups associated with each data sample. In this work, we propose a debiasing method that operates without any prior knowledge of the demographics in the dataset, detecting biased examples based on an auxiliary model that predicts the main model's success and down-weights them during the training process. Results on racial and gender bias demonstrate that it is possible to mitigate social biases without having to use a costly demographic annotation process.


翻译:从真实世界数据中培训的模型往往模仿和扩大社会偏见,虽然建议采取许多方法来减少偏见,但它们需要初步资料,说明应减轻的偏见类型(如性别或种族偏见)和与每个数据抽样有关的社会群体,在这项工作中,我们建议采用一种贬低偏见的方法,在不事先了解数据集中的人口统计的情况下运作,根据预测主要模型成功与否的辅助模型发现有偏见的例子,在培训过程中降低其重量,关于种族和性别偏见的结果表明,在不必使用昂贵的人口统计说明程序的情况下,可以减少社会偏见。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员