The Hopfield network serves as a fundamental energy-based model in machine learning, capturing memory retrieval dynamics through an ordinary differential equation (ODE). The model's output, the equilibrium point of the ODE, is traditionally computed via synchronous updates using the forward Euler method. This paper aims to overcome some of the disadvantages of this approach. We propose a conceptual shift, viewing Hopfield networks as instances of Deep Equilibrium Models (DEQs). The DEQ framework not only allows for the use of specialized solvers, but also leads to new insights on an empirical inference technique that we will refer to as 'even-odd splitting'. Our theoretical analysis of the method uncovers a parallelizable asynchronous update scheme, which should converge roughly twice as fast as the conventional synchronous updates. Empirical evaluations validate these findings, showcasing the advantages of both the DEQ framework and even-odd splitting in digitally simulating energy minimization in Hopfield networks. The code is available at https://github.com/cgoemaere/hopdeq
翻译:暂无翻译