We develop bicategory theory in univalent foundations. Guided by the notion of univalence for (1-)categories studied by Ahrens, Kapulkin, and Shulman, we define and study univalent bicategories. To construct examples of univalent bicategories in a modular fashion, we develop displayed bicategories, an analog of displayed 1-categories introduced by Ahrens and Lumsdaine. We demonstrate the applicability of this notion, and prove that several bicategories of interest are univalent. Among these are the bicategory of univalent categories with families and the bicategory of pseudofunctors between univalent bicategories. Furthermore, we show that every bicategory with univalent hom-categories is weakly equivalent to a univalent bicategory. All of our work is formalized in Coq as part of the UniMath library of univalent mathematics.
翻译:我们在单项基金会中开发双类理论。 在Ahrens、Kapulkin和Shulman所研究的(一)类的共性概念的指导下, 我们定义并研究单项双类的共性。 为了以模块方式构建单项双类的范例, 我们开发了双类的共性, 这是Ahrens和Lumsdaine所引入的一类显示的类似。 我们展示了这个概念的可适用性, 并证明好几个利益类的共性是非性。 其中有两类的家庭共性双类和两类之间的双类伪体。 此外, 我们展示了每个单项同类的双类都与单项的共性双类的微弱等。 我们的所有工作都在科克正式化, 作为单项数学大学图书馆的一部分。