项目名称: 表面等离激元增强宽光谱InGaN太阳能电池研究

项目编号: No.61204070

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 孙晓娟

作者单位: 中国科学院长春光学精密机械与物理研究所

项目金额: 32万元

中文摘要: InGaN太阳能电池是近年来最具发展前景的新型宽光谱太阳能电池。然而,效率低下是制约其发展和应用的主要问题之一。提高InGaN量子阱层有效吸收太阳光是提高InGaN太阳能电池效率的有效途径。本项目提出利用金属纳米粒子表面等离激元增强的方式来提高InGaN太阳能电池的光电转换效率。重点研究金属纳米粒子与光子引导、限制和耦合等相互作用机理,建立金属纳米粒子表面等离激元增强InGaN太阳能电池效率的模型。研究金属纳米粒子的种类、形态、尺寸、密度、分布等对InGaN吸收层光增益的影响,探索InGaN量子阱的厚度、组分、极性以及衬底材料种类对光传输路径的限制规律,研究光吸收层中光波导形成模式,揭示表面等离激元增强宽光谱InGaN太阳能电池效率的物理机制。最终,研制出表面等离激元增强InGaN太阳能电池原型器件,为我国新型、高效太阳能电池的发展奠定基础。

中文关键词: 表面等离激元;InGaN;太阳能电池;;

英文摘要: InGaN-based solar cell is the most promising, novel and broad-spectrum solar cell in recent years. However, the inefficiency is one of the main problems restricting its development and applications. To improve the effective absorption of the InGaN multiple quantum wells (MQWs) to the sunlight is an effective way to improve the efficiency of InGaN solar cells. In this project, surface plasmon polaritons (SPPs) enhanced photoelectric conversion efficiency of the InGaN solar cells is proposed. We will focus on studying mechanism of interaction between the metal nanoparticles and photons guide, constraints and coupling, and then establish the model of the enhanced efficiency of InGaN-based solar cell by SPPs. By studying effect of the types, shape, size, density, distribution of metal-nanoparticles on optical gain of the InGaN MQWs, exploring the limit law of the InGaN quantum well thickness, composition, polarity and substrate material on optical transmission path, and investigating the formation model of optical waveguide in the light absorption layer, the physical mechanism of the SPPs enhanced InGaN solar cell efficiency will be revealed. Finally, a demo enhanced InGaN solar cell device by SPPs will be fabricated, which will promote the development of China's high efficiency novel solar cells.

英文关键词: Surface plasmon;InGaN;Solar cell;;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
64+阅读 · 2021年7月1日
【WWW2021】本体增强零样本学习
专知会员服务
33+阅读 · 2021年2月26日
专知会员服务
52+阅读 · 2020年12月28日
专知会员服务
109+阅读 · 2020年5月21日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
创业邦招聘丨2022,一起探索商业“未来式”
创业邦杂志
0+阅读 · 2022年3月4日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Music Source Separation with Generative Flow
Arxiv
0+阅读 · 2022年4月26日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
13+阅读 · 2020年4月12日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员