Endowing visual agents with predictive capability is a key step towards video intelligence at scale. The predominant modeling paradigm for this is sequence learning, mostly implemented through LSTMs. Feed-forward Transformer architectures have replaced recurrent model designs in ML applications of language processing and also partly in computer vision. In this paper we investigate on the competitiveness of Transformer-style architectures for video predictive tasks. To do so we propose HORST, a novel higher order recurrent layer design whose core element is a spatial-temporal decomposition of self-attention for video. HORST achieves state of the art competitive performance on Something-Something-V2 early action recognition and EPIC-Kitchens-55 action anticipation, without exploiting a task specific design. We believe this is promising evidence of causal predictive capability that we attribute to our recurrent higher order design of self-attention.
翻译:赋予具有预测能力的视觉代理器是向大规模视频智能迈出的关键一步。 这方面的主要模型模式是序列学习,大多通过LSTMs实施。 Feed-forward 变异器结构取代了语言处理和部分计算机视觉 ML应用中的经常性模型设计。 在本文中,我们调查了变异器式结构在视频预测任务方面的竞争力。 为了这样做,我们建议了HORST, 一个新的更高级的经常性层设计,其核心要素是空间-时空自控视频。 HORST在某物- Something-V2 早期行动识别和 EPIC-Kitchens-55 行动预期方面达到了最先进的竞争性能,而没有利用特定任务设计。 我们认为,这是我们把这种因果性预测能力归因于我们经常性的更高自控设计。