This work considers the combinatorial multi-access coded caching problem introduced in the recent work by Muralidhar \textit{et al.} [P. N. Muralidhar, D. Katyal, and B. S. Rajan, ``Maddah-Ali-Niesen scheme for multi-access coded caching,'' in \textit{IEEE Inf. Theory Workshop (ITW)}, 2021] The problem setting consists of a central server having a library of $N$ files and $C$ caches each of capacity $M$. Each user in the system can access a unique set of $r<C$ caches, and there exist users corresponding to every distinct set of $r$ caches. Therefore, the number of users in the system is $\binom{C}{r}$. For the aforementioned combinatorial multi-access setting, we propose a coded caching scheme with an MDS code-based coded placement. This novel placement technique helps to achieve a better rate in the delivery phase compared to the optimal scheme under uncoded placement, when $M> N/C$. For a lower memory regime, we present another scheme with coded placement, which outperforms the optimal scheme under uncoded placement if the number of files is no more than the number of users. Further, we derive an information-theoretic lower bound on the optimal rate-memory trade-off of the combinatorial multi-access coded caching scheme. Finally, using the derived lower bound, we show that the first scheme is optimal in the higher memory regime, and the second scheme is optimal if $N\leq \binom{C}{r}$.


翻译:这项工作考虑到Muralidhar \ textit{et al.} [P. N. Muralidhar, D. Katyal, 和B. S. Rajan, “Maddah-Ali-Niesen ” 多存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存取存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存存

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月24日
Arxiv
0+阅读 · 2023年2月22日
Arxiv
11+阅读 · 2020年12月2日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员