Grid-free Monte Carlo methods such as \emph{walk on spheres} can be used to solve elliptic partial differential equations without mesh generation or global solves. However, such methods independently estimate the solution at every point, and hence do not take advantage of the high spatial regularity of solutions to elliptic problems. We propose a fast caching strategy which first estimates solution values and derivatives at randomly sampled points along the boundary of the domain (or a local region of interest). These cached values then provide cheap, output-sensitive evaluation of the solution (or its gradient) at interior points, via a boundary integral formulation. Unlike classic boundary integral methods, our caching scheme introduces zero statistical bias and does not require a dense global solve. Moreover we can handle imperfect geometry (e.g., with self-intersections) and detailed boundary/source terms without repairing or resampling the boundary representation. Overall, our scheme is similar in spirit to \emph{virtual point light} methods from photorealistic rendering: it suppresses the typical salt-and-pepper noise characteristic of independent Monte Carlo estimates, while still retaining the many advantages of Monte Carlo solvers: progressive evaluation, trivial parallelization, geometric robustness, \etc{}\ We validate our approach using test problems from visual and geometric computing.
翻译:无网格的蒙特卡洛方法,如 emph{jwalk on splose} 可以用来在没有网状生成或全球解决方案的情况下解决椭圆部分差异方程式。 但是, 这种方法可以独立地在每一点对解决方案进行估算, 从而不利用高空间对椭圆问题解决方案的规律性。 我们提出快速缓冲战略, 首先在域边界( 或当地感兴趣的区域) 随机抽样点估计解决方案值和衍生物。 这些缓存值然后通过边界整体配方, 对内部点的解决方案( 或其梯度) 进行廉价、 产出敏感的评估。 不同于典型的边界整体方法, 我们的缓冲计划引入了零统计偏差, 不需要密集的全球解决方案 。 此外, 我们可以处理不完善的地理测量( 例如, 使用自间隔断部分) 和详细边界/ 源术语, 而无需修复或重新标注边界代表。 总体而言, 我们的计划在精神上类似于 emph{ 虚拟点光点 的方法, 从光现实的描述中提供: 它抑制了独立的蒙特卡洛估算的典型的盐- 噪音特征特征特征特征特征特征特征特征特征特征, 同时保留了我们平行的直观测算的模型的模型的模型的优势。</s>