There has recently been great interest in neural rendering methods. Some approaches use 3D geometry reconstructed with Multi-View Stereo (MVS) but cannot recover from the errors of this process, while others directly learn a volumetric neural representation, but suffer from expensive training and inference. We introduce a general approach that is initialized with MVS, but allows further optimization of scene properties in the space of input views, including depth and reprojected features, resulting in improved novel-view synthesis. A key element of our approach is our new differentiable point-based pipeline, based on bi-directional Elliptical Weighted Average splatting, a probabilistic depth test and effective camera selection. We use these elements together in our neural renderer, that outperforms all previous methods both in quality and speed in almost all scenes we tested. Our pipeline can be applied to multi-view harmonization and stylization in addition to novel-view synthesis.
翻译:最近人们对神经成形方法产生了极大兴趣。有些方法使用了3D几何方法,用多视立体重建了3D几何方法,但无法从这个过程的错误中恢复过来,而另一些方法则直接学习体积神经表征,但受到昂贵的培训和推断。我们引入了一种与MVS初始化的一般方法,但允许进一步优化输入视图空间的场景属性,包括深度和重新预测的特征,从而改进了新观点合成。我们方法的一个关键要素是我们基于双向叶光线平均折叠式、概率深度测试和有效的相机选择的新的可区分点基管。我们在神经成型中同时使用这些元素,这些元素在质量和速度上都超越了我们所测试的几乎所有场景中的所有先前方法。我们的管道可以应用于多视调和标准化,此外还有新观点合成。