Artificial neural networks (ANNs) have gained significant popularity in the last decade for solving narrow AI problems in domains such as healthcare, transportation, and defense. As ANNs become more ubiquitous, it is imperative to understand their associated safety, security, and privacy vulnerabilities. Recently, it has been shown that ANNs are susceptible to a number of adversarial evasion attacks--inputs that cause the ANN to make high-confidence misclassifications despite being almost indistinguishable from the data used to train and test the network. This work explores to what degree finding these examples maybe aided by using side-channel information, specifically switching power consumption, of hardware implementations of ANNs. A black-box threat scenario is assumed, where an attacker has access to the ANN hardware's input, outputs, and topology, but the trained model parameters are unknown. Then, a surrogate model is trained to have similar functional (i.e. input-output mapping) and switching power characteristics as the oracle (black-box) model. Our results indicate that the inclusion of power consumption data increases the fidelity of the model extraction by up to 30 percent based on a mean square error comparison of the oracle and surrogate weights. However, transferability of adversarial examples from the surrogate to the oracle model was not significantly affected.


翻译:过去十年来,人工神经网络(ANNS)在解决保健、交通和国防等领域内狭隘的AI问题方面取得了显著的受欢迎程度。随着ANNS越来越普遍,必须了解它们相关的安全、安保和隐私脆弱性。最近,人们已经表明,ANNS很容易受到一些对抗性规避攻击-投入,导致ANN几乎无法区分用于培训和测试网络的数据,但导致高度信任误判的模型几乎无法与用于培训和测试网络的数据区分。这项工作探索了这些例子的发现程度,可能因为使用侧通道信息,特别是转换电耗,对ANNS硬件的硬件实施而有所帮助。假设了黑箱威胁情景,攻击者可以接触到ANN硬件的投入、输出和表面学,但经过培训的模型参数却不为人所知。随后,一个超导模型被训练成类似的功能模式(即输入-输出映射图)和变换电源特征(黑箱)模型(黑箱)模型。我们得出的结果表明,将电力提取数据的比重性从30级提高到了标准的比重。我们没有显示,将指数的比重数据比重从指数的比重提高到了标准。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
151+阅读 · 2020年6月28日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月13日
Arxiv
0+阅读 · 2021年8月12日
Arxiv
12+阅读 · 2020年12月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员