Real world traffic sign recognition is an important step towards building autonomous vehicles, most of which highly dependent on Deep Neural Networks (DNNs). Recent studies demonstrated that DNNs are surprisingly susceptible to adversarial examples. Many attack methods have been proposed to understand and generate adversarial examples, such as gradient based attack, score based attack, decision based attack, and transfer based attacks. However, most of these algorithms are ineffective in real-world road sign attack, because (1) iteratively learning perturbations for each frame is not realistic for a fast moving car and (2) most optimization algorithms traverse all pixels equally without considering their diverse contribution. To alleviate these problems, this paper proposes the targeted attention attack (TAA) method for real world road sign attack. Specifically, we have made the following contributions: (1) we leverage the soft attention map to highlight those important pixels and skip those zero-contributed areas - this also helps to generate natural perturbations, (2) we design an efficient universal attack that optimizes a single perturbation/noise based on a set of training images under the guidance of the pre-trained attention map, (3) we design a simple objective function that can be easily optimized, (4) we evaluate the effectiveness of TAA on real world data sets. Experimental results validate that the TAA method improves the attack successful rate (nearly 10%) and reduces the perturbation loss (about a quarter) compared with the popular RP2 method. Additionally, our TAA also provides good properties, e.g., transferability and generalization capability. We provide code and data to ensure the reproducibility: https://github.com/AdvAttack/RoadSignAttack.


翻译:现实世界交通标志的承认是建设自主车辆的重要一步,其中多数高度依赖深神经网络(DNNs),最近的研究表明,DNNs极易受到对抗性例子的影响。许多攻击方法被提出来理解和产生对抗性例子,如梯度攻击、计分攻击、决策攻击和转移攻击。然而,这些算法大多在现实世界路标攻击中无效,因为(1)反复学习每个框架的干扰对于快速移动的汽车来说是不现实的,(2)最优化的算法在不考虑其不同贡献的情况下对所有像素进行同等的反向。为了缓解这些问题,本文提出了针对真实世界路标攻击的注意攻击方法。具体地说,我们做了以下贡献:(1)我们利用软关注地图来突出这些重要的像素,并避开那些零受威胁的地区—这也有助于产生自然的扰动,(2)我们设计一个高效的通用攻击,以最优化一次的触动性/感触动性算法为基础,而没有考虑到它们的不同贡献。(3) 我们设计一个简单的目标函数来优化真实攻击地图的升级。A 改进一个简单的目标功能。A 改进一个成功的计算结果。

0
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Capsule Networks,胶囊网络,57页ppt,布法罗大学
专知会员服务
66+阅读 · 2020年2月29日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
149+阅读 · 2019年10月12日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关资讯
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员