We introduce \textbf{OP}tical \textbf{AD}versarial attack (OPAD). OPAD is an adversarial attack in the physical space aiming to fool image classifiers without physically touching the objects (e.g., moving or painting the objects). The principle of OPAD is to use structured illumination to alter the appearance of the target objects. The system consists of a low-cost projector, a camera, and a computer. The challenge of the problem is the non-linearity of the radiometric response of the projector and the spatially varying spectral response of the scene. Attacks generated in a conventional approach do not work in this setting unless they are calibrated to compensate for such a projector-camera model. The proposed solution incorporates the projector-camera model into the adversarial attack optimization, where a new attack formulation is derived. Experimental results prove the validity of the solution. It is demonstrated that OPAD can optically attack a real 3D object in the presence of background lighting for white-box, black-box, targeted, and untargeted attacks. Theoretical analysis is presented to quantify the fundamental performance limit of the system.


翻译:我们引入了\ textbf{OP}textbf{AD}versarial attack (OPAD) 。 OPAD 是物理空间中的对抗性攻击,目的是在不实际触动物体(例如移动或油漆物体)的情况下愚弄图像分类器。 OPAD 的原则是使用结构化的照明来改变目标物体的外观。 系统由低成本投影机、 相机和计算机组成。 问题的挑战在于投影器的辐射度反应和现场空间变化的光谱反应的不均匀性。 常规方法中产生的攻击在此环境下行不通, 除非校准它们来补偿这种投影机- 摄像模型。 拟议的解决方案将投影机模型纳入对抗性攻击最优化中, 并由此得出新的攻击配方。 实验结果证明了解决方案的有效性。 事实证明, OPADD可以在白箱、 黑盒、 定向和非目标攻击的背景照明中光学地攻击一个真正的三维天体物体。 理论分析将系统的基本性能限制量化。

0
下载
关闭预览

相关内容

专知会员服务
30+阅读 · 2021年9月11日
专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
53+阅读 · 2020年9月7日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月11日
Arxiv
0+阅读 · 2021年10月10日
Arxiv
12+阅读 · 2020年12月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Adversarial Metric Attack for Person Re-identification
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
人工智能 | 国际会议信息6条
Call4Papers
5+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员