Since the Lipschitz properties of convolutional neural networks (CNNs) are widely considered to be related to adversarial robustness, we theoretically characterize the $\ell_1$ norm and $\ell_\infty$ norm of 2D multi-channel convolutional layers and provide efficient methods to compute the exact $\ell_1$ norm and $\ell_\infty$ norm. Based on our theorem, we propose a novel regularization method termed norm decay, which can effectively reduce the norms of convolutional layers and fully-connected layers. Experiments show that norm-regularization methods, including norm decay, weight decay, and singular value clipping, can improve generalization of CNNs. However, they can slightly hurt adversarial robustness. Observing this unexpected phenomenon, we compute the norms of layers in the CNNs trained with three different adversarial training frameworks and surprisingly find that adversarially robust CNNs have comparable or even larger layer norms than their non-adversarially robust counterparts. Furthermore, we prove that under a mild assumption, adversarially robust classifiers can be achieved using neural networks, and an adversarially robust neural network can have an arbitrarily large Lipschitz constant. For this reason, enforcing small norms on CNN layers may be neither necessary nor effective in achieving adversarial robustness. The code is available at https://github.com/youweiliang/norm_robustness.


翻译:由于Lipschitz convolual 神经网络(CNNs)的特性被广泛认为与对抗性强力有关,因此,我们从理论上将2D多渠道共变层的规范与2D多渠道共变层的规范划为$ell_1美元和$ell ⁇ infty美元,并提供高效的方法来计算准确的$ell_1美元规范与美元共变神经网络的特性。根据我们的理论,我们建议一种称为规范衰落的新式的正规化方法,这可以有效减少共变层和完全连接层的规范。实验表明,规范正规化方法,包括规范腐蚀、重量腐蚀和单值剪切等,可以改进CNNs的一般化。然而,它们可能略微伤害到对抗性强的稳健性强性强性强性强性强性。我们观察到了在三种不同的对抗性培训框架下所训练的CNNS的规范,并令人惊讶地发现,有对抗性强性强性CNN的网络比非敌对性强性强性强性强性强性强的对等的对等的规范。此外,我们证明,在一种温性强性强性强性强性强性的分类化的网络中可以使用神经的网络的强大性网络可以实现。

0
下载
关闭预览

相关内容

不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
59+阅读 · 2020年12月11日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
0+阅读 · 2021年10月8日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
4+阅读 · 2015年3月20日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
8+阅读 · 2018年12月28日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员